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Switch of encoding characteristics in single neurons by subthreshold and suprathreshold stimuli
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Spike-triggered analysis is a statistical method used to elucidate encoding properties in neural systems by
estimating the statistical structure of input stimulus preceding spikes. A recent numerical study suggested that
the profile of the spike-triggered average (STA) changes depending on whether the mean input stimuli are
subthreshold or suprathreshold. Here we analytically verify the difference between subthreshold STA and
suprathreshold STA by using the spike response model (SRM). We show by moment expansion that the
suprathreshold STA is proportional to the first derivative of the response kernel, and that the subthreshold STA
is expressed by a linear combination of the response kernel and its first derivative. We verify whether the
analytical results obtained from the SRM can be applied to a multicompartment model with Hodgkin-Huxley

type dynamics.
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I. INTRODUCTION

Neurons are encoders that transform series of time-
varying input stimuli into spikes. The spike-triggered analy-
sis is a statistical method used to estimate the encoding prop-
erties of neurons by characterizing the statistical structure of
the input stimuli inducing spikes [1-7]. In particular, the
spike-triggered average (STA) and the spike-triggered cova-
riance (STC), which are, respectively, the first and second
moments of the spike-triggered ensemble, have been used
extensively in recent experimental studies, in order to ex-
plore the receptive fields in neural systems [8-11].

The input-output relations of single neurons depend on
the intrinsic dynamical properties governed by various ion
channels, neuronal morphology, and so on. Hence, the intrin-
sic dynamical properties determine the encoding properties
of single neurons. Several studies have tried to elucidate the
relation between the encoding properties and the intrinsic
dynamical properties quantitatively, by deriving the relation
between the STA and the neural membrane dynamics analyti-
cally. Based on the stochastic process theory, the STA has
been analytically calculated for simple neuron models such
as the linear-nonlinear model [12], the phase oscillator model
[13] and the threshold crossing model [14,15], as well as for
more detailed neuron models such as the leaky integrate-and-
fire model [16] and its generalized models [17-19].

Recently, Mato and Samengo [20] have shown by numeri-
cal simulations that in the theta model (also known as the
Ermentrout-Kopell canonical model) [21,22] the profile of
the STA differs depending on whether the mean stimuli to
the neuron are subthreshold or suprathreshold. Their simula-
tion results suggested that the STA is similar to the first de-
rivative of the phase response curve (PRC) when the neuron
receives the stimuli of suprathreshold mean, whereas the
STA was suggested to resemble the PRC itself when the
neuron receives the stimuli of subthreshold mean (in order to
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discriminate between these two kinds of STAs, we hereafter
call the STA for subthreshold mean stimuli and that for su-
prathreshold mean stimuli as the subthreshold and suprath-
reshold STAs, respectively). This difference between the sub
and suprathreshold STAs shown numerically implies that the
encoding properties of neurons change depending on the av-
erage activity level. However, the difference between the sub
and suprathreshold STAs has not been addressed in the pre-
vious analytical studies of the STA [12-19] while either the
subthreshold STA [12,14-19] or the suprathreshold STA [13]
was investigated in each of those studies. To show this dif-
ference analytically, we need to elucidate the relation be-
tween the STA and an intrinsic dynamical property other
than the PRC, since the PRC cannot be defined when the
neuron receives the subthreshold mean stimuli.

In this study, we analytically verify the difference be-
tween the sub and suprathreshold STAs shown numerically
in the previous study [20], by analyzing spike response
model (SRM) [23,24]. In the SRM, the intrinsic dynamical
property is described by a response kernel (a linear response
function) that can be defined regardless of whether the mean
stimuli are subthreshold or suprathreshold. Moreover, the
SRM is known to reproduce the intrinsic dynamical proper-
ties of biological plausible models such as the Hodgkin-
Huxley model [25]. Here we show the analytical relation
between the STA and the response kernel by analyzing the
SRM. We first show a general form of the STA of the SRM
by the moment expansion. Next, the suprathreshold STA is
shown to be proportional to the first derivative of the re-
sponse kernel by lower-order moment expansion, whereas
the subthreshold STA is shown to be expressed by a linear
combination of the response kernel and its first-order deriva-
tive by infinite-order moment expansion. By numerical simu-
lations, we verify whether the analytical results obtained
from the SRM can be applied to a multicompartment model
with Hodgkin-Huxley type dynamics.

II. FORMULATION

In this section, we first describe the dynamics of the SRM
and then relate the SRM to the STA.

©2010 The American Physical Society
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FIG. 1. (Color online) Time course of membrane potential in the SRM (thick solid line) and that in the threshold crossing model (thin
solid line): (a) the case of subthreshold mean stimuli and (b) the case of suprathreshold mean stimuli. The mean trajectory of the SRM and
that of the threshold crossing model are indicated by the dashed line (time varying) and dash dotted line (time constant), respectively. The

firing threshold € is shown by the dotted line.

A. Spike response model

We assume that the dynamics of membrane potential in
single neurons obeys the SRM. In the SRM, the membrane
potential V(z) is expressed as follows [17]:

V(t):Jj k(t = $)I(s)ds + n(t - 1), (1)

t

where 7 denotes the most recent firing time at time . x(¢) is
the subthreshold response kernel describing the linear re-
sponse to an input pulse, I(¢) is an external input current, and
7(t) is the suprathreshold response kernel describing the
spike potential. Thus, in the SRM, the membrane potential is
described as a sum of the suprathreshold response kernel #(z)
and a convolution of the subthreshold response kernel «(z)
and an external input I(¢). Hereafter we call the subthreshold
response kernel simply the response kernel. The firing time is
defined as the time when the membrane potential crosses the
firing threshold 6 from below. The set of firing times, T,
is expressed as follows:

Tspike= {I|V(t) =60 and d‘;_it) > 0} (2)

We assume that the neuron receives a constant current /;
and a stochastic current &(r),

1(1) =1+ &(1), 3)

where the stochastic current &(¢) is assumed to be a white
Gaussian noise:

(&(1))¢=0, 4)
(ENE)) =8t -1"). (5)

d(x) denotes Dirac’s delta function and o denotes the stan-
dard deviation of the white Gaussian noise.

We show a time course of membrane potential of the
SRM in Fig. 1, in order to show the difference between the
SRM used in this study and the threshold crossing model
[21,22] used in the previous studies regarding the STA
[14,15]. The thick solid line in Fig. 1(A) shows the mem-
brane potential when the neuron receives the subthreshold
mean stimuli. We find that the membrane potential fluctuates

around the time-varying mean (dashed line). Note that the
change in the mean of the membrane potential is due to the
resetting mechanism in the SRM. On the other hand, the
membrane potential in the threshold crossing model [thin
solid line in Fig. 1(A)] fluctuates around the constant mean
(dash dotted line), since threshold crossing model has no
resetting mechanism (the threshold crossing model is equiva-
lent to the SRM with the following two conditions: 7(z)
=const and /=-). Thus, the threshold crossing model used
in the previous studies [14,15] is a special case of the SRM
used in the present paper. Since the mean of membrane po-
tential in the SRM is time varying, its membrane potential
[thick solid line in Fig. 1(B)] fluctuates below the firing
threshold when the neuron receives the suprathreshold mean
stimuli. Thus, the SRM can naturally treat the suprathreshold
mean stimuli. In contrast, the threshold crossing model with
the suprathreshold mean stimuli seems to be rather unnatural
since its membrane potential [thin solid line in Fig. 1(B)]
fluctuates above the firing threshold when the neuron re-
ceives the suprathreshold mean stimuli. We therefore use the
SRM, which we can treat both the sub and suprathreshold
mean stimuli.

B. Relating the spike-triggered average to the SRM

The STA is an ensemble average of time-varying current
preceding each spike, and is defined as follows:

s(7) = (&1, = D) (6)

where 7 is a firing time. The average (-), is taken with re-
spect to time series of the stochastic current {£(r)}. In order
to derive the STA of the SRM, we relate the first passage
time of the SRM to the firing time, 7,, in the definition of the
STA. The first passage time is defined as the time when a
neuron passes a firing threshold from below for the first time
[27]. When we assume that the first passage time of the
neuron receiving the stochastic current {£(r)} is determined
by f(t,] ), the STA is expressed using f(t,| £) as follows:

s(7) = Jdtxf(ts|§)§(ls—7) ; )

0 ¢
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f(t]§) = OV’ (1) ]d V(z,) - 01V’ (1), (8)

where ®(x) is a Heaviside step function that takes a value of
1 for x>0, 1/2 for x=0, and O for x<<0. The delta function
A V(t,)— 0] and the Heaviside step function ®[V'(z,)] in the
expression f(t,| &) restrict ¢, to a firing time.

The method to relate the STA to the SRM [Egs. (7) and
(8)] described in the present subsection is equivalent to the
one used to relate the STA to the threshold crossing model in
the previous studies by Hong er al. [14] and Burak er al.

[15].

III. SUB AND SUPRATHRESHOLD STAS OF THE SRM

We derive the relation between the STA and the SRM by
using the moment expansion and we obtain the time profiles
of the sub and suprathreshold STAs of the SRM analytically.

A. General form of the STA

The part of membrane potential driven by stochastic cur-
rent &(¢) is expressed by the following equation:

v(r) = f k(t—s)&(s)ds. 9)
Using this expression, we express Eq. (8) as
f(t]&) = Ov"(t) + H' () ][v(t;) + H(t) ][v' (1;) + H' (2,)].
(10)

where we put H(r) as follows:
t
H(t)=loJ k(t—s)ds+ n(t—1) - 6. (11)
t

Note that the framework in the previous studies [14,15] cor-
responds to the case that H(z) is constant.

By using Fourier transform representation of the delta
function and the Heaviside step function and by Taylor ex-
pansion with respect to v(z,) and v’(z,), we obtain the fol-
lowing equation:

s(7) = %f“ dtsjw dw exp[in(tS)]E (lw#
™o —% m=0 M-

X [am,l(ts’ T) + am,O(ts’ T)H, (ts)]

1 (” * ” iwH (1) + ivH' (¢,
+_f dtsf dwf dDeXp[tw (Q ivH'(1,)]
47 ), . .

v

X E E M[am,nﬂ(ﬁw )+ am,n(tm nH'(1,)],
m=0 n=0 m:n:

(12)

where the correlation a,, ,(f,,7) is expressed as follows:

am,n(ts’ T) = <Um(ts)[v ' (ts)]ng(ts - T)>§ (13)

To evaluate the STA, we need to calculate the correlations
{a,,.(t;, 7)}. It is in principle possible to derive the STA rig-
orously by evaluating the inverse Fourier transforms of the
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correlations {a,, ,(,,7)} for all possible combinations of m
and n. Due to the properties of the white Gaussian noise, the
correlation a,,,(t;, 7) can be decomposed to

am,n(tsa T) = K(T)fm,n(ts) + K,(T)gm,n(ts) > (14)

where f,, ,(t,) and g, ,(,) are functions of #,. Thus, the gen-
eral form of the STA is found to be expressed by a linear
combination of the response kernel and its first-order deriva-
tive with respect to time:

s(7)=c k(1) + k' (7), (15)

where ¢, and ¢, are constants.

We have shown by moment expansion that the STA of the
SRM is a linear combination of the response kernel and its
derivative. This result is consistent with that of the previous
study using the threshold crossing model [15] (note that the
correlation between O[v’(z,)] and Juv(r,)] is neglected in the
approximation in the previous study). As shown in Fig. 1, the
SRM has a resetting mechanisms and can treat both sub and
suprathreshold regimes, while the membrane potential in the
threshold crossing model just fluctuates without any resetting
mechanism. Thus, the derived STA of SRM corresponds to
the STA of a neuron model that is more biologically plau-
sible.

B. Suprathreshold STA

When the mean of external input current is suprathresh-
old, we can evaluate the suprathreshold STA by considering
the case of a noise of infinitesimal amplitude, since the neu-
ron can fire with only the constant current. Thus the suprath-
reshold STA can be obtained by finite-order expansions. By
expanding the STA up to the first-order terms, we can ex-
press s(7) as follows:

©

s(7)=—

- dtsf dw exp[in(ts)]{a() l(ts7 T)
4ar 0 _ ’

+ [a(),()(ts’ T) + iwal ,()(t.w T)]H,(ts)}

1 ([~ * * iwH(t,) +ivH' (¢
s f i J o f gy EPLIOH () + ivH (1))
47 ), Y .

v

X {aO,l(ts’ T) + [a(),()(ts’ T) + iwal,()(tw T)
+ivay, (1, 7)]H' (1))} (16)
Using the properties of white Gaussian noise, we calculate

the correlations ag o(f,, 7),a; o, 7), a9 ((f;, 7) in Eq. (16) as
follows:

a0,0(tm T) = <§(ts - T)>§: O’ (17)
aro(t, 1) = (t) 1ty = 7)) = 07 k(7), (18)

ag, (1, 7) = (0" (1) €1, ~ 7)) = 07k (7), (19)

where we put x(0)=0. By performing further calculations
given in Appendix, we express s(7) as follows:
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s() =0k (7) J dt®[H' (t,) ]9 H(z,)]
0
- UZK(T)J dtsé[H(ts)]‘S[H’(ts)]H”(ts)
0

+ 07k (7) J di, o[ H(t,) |6l H' (1) 1H' (1;).  (20)
0

When the constant current is suprathreshold, the neuron fires
in a finite time. Thus, the terms in Eq. (20) that include
8 H(t,)]aH'(t,)] become zero and only the first term re-
mains. When we denote the firing time due to the constant
input by 7, we have H(T)=0. Thus, the main term of the
suprathreshold STA is derived as the following expression:

s(7) = olK’(T)J di,O[H'(1,) ][ H(1,)]
0

_ ’ ” ®[H,(ts)]5(ts _ T)

= ?K (7')f0 dt, H (1)

_ LKD)

=y (21)

Thus, our analysis reveals that the suprathreshold STA is
proportional to the first derivative of the response kernel.

C. Subthreshold STA

When the mean of external input current is subthreshold,
the neuron does not fire with only a constant current. We
therefore consider the case of a finite-amplitude noise. Since
v(t,) and v'(z,) take finite values in this case, we need to
evaluate 8(x) and ®(x) at x # 0 in the moment expansion. We
need the infinite-order expansion to evaluate the generalized
functions 8(x) and ®(x) for x # 0. Therefore, the subthresh-
old STA can be evaluated by the infinite-order expansions.
Hence, the subthreshold STA is found to be expressed by the
linear combination of the response kernel and its first deriva-
tive (note that the values of coefficients ¢; and c¢, are
undetermined).

s(7)=c k(1) + k' (7), (22)

In general, ¢; and ¢, may have nonzero values.

From the analysis described above, the suprathreshold
STA is found to be expressed by the first derivative of the
response kernel by means of the lower-order (finite-order)
expansion. On the other hand, the subthreshold STA is
shown to be expressed by the linear combination of the re-
sponse kernel and its derivative by means of the infinite-
order expansion. This analytical result shows that the shape
of STA changes drastically between the sub and suprathresh-
old regimes; the STA expressed by the linear combination of
the response kernel and its derivative changes into the one
expressed by only the derivative of the response kernel, as
the system approaches to the suprathreshold regime. This
suggests that the mathematical structure changes between the
sub and suprathreshold regimes.
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IV. NUMERICAL SIMULATIONS

In this section, we verify the analytically derived sub and
suprathreshold STAs of the SRM by numerical simulations
using two kinds of neuron models: the SRM and a multicom-
partment model with Hodgkin-Huxley type dynamics. In
both simulations, the input current is assumed to consist of a
constant current and a stochastic current governed by a white
Gaussian noise: as in the previous section, I(r)=1I,+ &(t) for
t=0. For simplicity, we assume that at /=0 the neuron is in
a resting state and that the previous firing occurred at 7=0.
The STA is calculated numerically by averaging the time
series of the stochastic current inducing a spike over multiple
trials.

A. Numerical simulations using SRM

In numerical simulations of the SRM, we use two typical
examples of the response kernels: the type I and type II re-
sponse kernels that are shown in Figs. 2(A) and 3(A), respec-
tively. The type I and II response kernels can mimic the
subthreshold dynamics of type I and II biologically plausible
neuron models [25]. For simplicity, the suprathreshold re-
sponse kernel 7(r) is set to be zero. We obtain the STA
numerically by calculating the average over 5 10° trials.

Figure 2 shows the results for the type I kernel. The type
I kernel used here [Fig. 2(A)] is expressed by the following
equation:

k(1) = iexp(— i), (23)
70 To

where 7, is a time constant. We set /p=1 and 7y=1. In this
parameter setting, H(%) defined by Eq. (11) becomes H()
=Iy[i«(s)ds—0=1—6. Thus, the condition H()>0
(namely, 6<1) corresponds to the suprathreshold mean
stimuli, whereas the condition H(%)<0(6>1) corresponds
to the subthreshold mean stimuli.

We first consider the situation that the mean stimuli are
suprathreshold in order to obtain the suprathreshold STA; the
firing threshold is set to satisfy H(%)>0. The STA of the
SRM obtained from simulations is shown by cross symbols
in Fig. 2(B). As shown in the previous section, we can derive
the suprathreshold STA from the response kernel, (). The
solid line in Fig. 2(B) indicates the STA derived from the
type I kernel [Eq. (23)]. We find that the numerically ob-
tained suprathreshold STA is likely to be similar to the first
derivative of the type I kernel with respect to time .

The subthreshold STA, in contrast, has the different pro-
file as shown by crosses in Fig. 2(C). Here we set the firing
threshold high enough to satisfy H(%)<<0. The subthreshold
STA [Fig. 2(C)] takes positive values over a wider range than
does the suprathreshold STA [Fig. 2(B)]. This suggests that
the subthreshold STA cannot be expressed by only the first
derivative of response kernel. The solid line in Fig. 2(C) is
the one fitted by using a linear combination of the kernel
itself and its first derivative. We see that the subthreshold
STA obtained numerically is fitted well by a linear combina-
tion of the kernel and its first derivative, as indicated by Eq.
(15). These numerical results obtained by using the SRM
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FIG. 2. (Color online) (A) Type I response kernel () of SRM (7y=1). (B) Suprathreshold STA obtained in numerical simulation
(crosses) and the suprathreshold STA derived from the response kernel of the SRM as the derivative of the kernel «’(7) (solid line).
Parameters are set as 0=0.01, 6=0.99. (C) Subthreshold STA obtained in numerical simulation (crosses). The solid line in C is a line fitted
to the numerically obtained subthreshold STA by a linear combination of the response kernel and its first derivative c¢;x(7)+cyk’(7).
Coefficients of the linear combination are determined by the least-squares method (¢;=0.4156 and c¢,=0.3274). Parameters are set as o

=0.1, 6=1.1.

with the type I kernel show that the shape of STA changes
between sub and suprathreshold regimes, as indicated by the
analyses in the previous section.

We next show the results for the type II kernel (Fig. 3).
The type II kernel is expressed by the following equation

[Fig. 3(A)]:
k(1) = i exp(— i )cos(—t ), (24)
T T

0 0 7

where 7, is a time constant. The parameters of the response
kernel are set as follows: 7y=1 and 7;=2.

In order to obtain the suprathreshold STA of the SRM
with type II kernel numerically, we first set the firing thresh-
old at a value lower than the maximal membrane potential
due to the constant current, which satisfies the condition
max, H(r) >0. We set the parameters of the external input as
follows: Ip=1 and o=0.01. As shown in Fig. 3(B), the STA

A B

kernel function of SRM

K(t) 0.15 |

suprathreshold STA

theoretically derived from the type II kernel is in good agree-
ment with the numerically obtained suprathreshold STA.
Thus the suprathreshold STA for the SRM with a type II
kernel such as that for the SRM with a type I kernel, can be
expressed by the first derivative of the response kernel.

Furthermore, we obtained the subthreshold STA for the
SRM with type II kernel numerically by setting the firing
threshold to satisfy the condition max, H(r) <0. The obtained
STA is shown by crosses in Fig. 3(C). We see that this nu-
merically obtained STA for the type II response kernel can be
fitted by the linear combination of the response kernel «(7)
and its first-order derivative «'(7) [the solid line in Fig.
3(0)].

These numerical results show that, for both the type I and
II response kernels, the shape of the STA changes between
the sub and suprathreshold regimes as derived in the analysis
in the previous section. These results suggest that the ratio
between c; and ¢, in the expression of STA [s(7)=ck(7)

C

subthreshold STA

025] )
020] ~
0.15]
0.10 ]

t [ms]

T [ms]

T [ms]

FIG. 3. (Color online) (A) Type II response kernel «(z) of the SRM (7y=1, 7,=2). (B) Suprathreshold STA obtained in numerical
simulation (crosses) and the suprathreshold STA derived from the kernel of the SRM as the derivative of the kernel «’(z) (solid line).
Parameters are set as 0=0.01, 6=0.55. (C) Subthreshold STA obtained in numerical simulation (crosses) and a curve fitted to the numeri-
cally obtained subthreshold STA by the linear combination of the response kernel and its first derivative (solid line). Coefficients are
determined by the least square method (¢;=0.6456 and ¢,=0.32). Parameters are set as =0.12, 0=0.6.
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FIG. 4. Dependence of the STA on the firing threshold € in
numerical simulations using the SRM. The numerically obtained
STAs for different firing thresholds are fitted by a linear combina-
tion of the response kernel and its derivative and the dependence of
the ratio between the coefficients ¢;/c, on the threshold € is shown.
The fitting curve is calculated using the least-squares method. The
type I kernel is used, and the noise amplitude is set at 0=0.01. The
suprathreshold (subthreshold) regime corresponds to §<1(6>1).

+c,k'(7)] changes between the sub and suprathreshold re-
gimes. To verify this, we perform numerical simulations for
different firing thresholds by using the SRM with type I re-
sponse kernel. The dependence of the STA on the firing
threshold is shown in Fig. 4. As shown in Fig. 4, the ratio
¢,/c, takes nearly zero values when <1 (i.e., in the su-
prathreshold regime), whereas c,/c¢, takes positive values
and increases as 6 increases when 6> 1 (in the subthreshold
regime). Note in Fig. 4 that ¢; # 0 for §<<1 because we used
noise with a finite amplitude. Our numerical simulations
show that, as the mean stimuli increase beyond the suprath-
reshold regime, the STA expressed by the linear combination
of the response kernel and its derivative in the subthreshold
regime changed into the STA expressed by only the deriva-
tive of the response kernel.

B. Validation of analytical form of suprathreshold STA

Our analysis showed that the main term of the suprath-
reshold STA of the SRM is proportional to o”«’(7). To vali-
date this analytical form of the suprathreshold STA, we per-
form numerical simulations to evaluate the dependence of
the suprathreshold STA on noise amplitude. Figure 5 shows
the numerical results of the STAs for the following five val-
ues of noise amplitudes: 0=0.0025, 0.005, 0.0075, 0.01, and
0.015. We also show the suprathreshold STAs derived theo-
retically from the response kernel for the corresponding five
noise levels (solid lines in Fig. 5). One sees that the numeri-
cally obtained STAs for different noise levels are fitted well
by the theoretically derived STAs for the corresponding
noise levels. These results show that the analytical form of
the suprathreshold STA is valid and that the dominant term
of the suprathreshold STA is proportional to o>.

C. Simulations using a compartment model with
Hodgkin-Huxley type dynamics

To verify the analytical results for the sub and suprath-
reshold STAs of the SRM in a more biologically plausible
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(e} simulation theory

FIG. 5. (Color online) Dependence of the suprathreshold STA of
the SRM on noise amplitude (o). The numerically obtained suprath-
reshold STA (symbols) is fitted well by the theoretically derived
curve for the small amplitudes of noise. This shows that the depen-
dence of STA on noise amplitude derived in our analysis is valid for
weak noise. The STA for each noise level is indicated by the fol-
lowing symbols: =0.0025 (plus, +), 0.005 (cross, X), 0.0075 (tri-
angle, A), 0.01 (square, [J), 0.015 (circle, O). The type I kernel is
used, and the firing threshold is set at #=0.99.

neuron model, we perform numerical simulations using a
two-compartment model with somatic and dendritic com-
partments [Fig. 6(A)]. The external input I(z) =1+ &(z) is as-
sumed to be given to the dendritic compartment, and the
STA is calculated as the trial average (over 107 trials) of the
stochastic current inducing somatic spikes.

The somatic compartment is assumed to have the
Hodgkin-Huxley type dynamics with type I excitability pro-
posed by Wang and Buzsiki, as follows [26,28]:

dav.
Cd_ts == gNamSh(Vs —En,) - gKn4(Vs - Ex)-g.(Vs—Ey)

- gaxial( Vs - Vd) P (25)

where V, and V4 are membrane potentials at the somatic and
dendritic compartments, respectively. m and & are activation
and inactivation variables of the sodium channel and » is an
activation variable of the potassium channel. C is the mem-
brane capacitance, g,,;, 1S the axial conductance, and g, and
E, (xe{Na,K,L}) are the maximal conductances and the
reversal potentials, respectively. We set g,,=0.1 mS/cm?
and assume that other parameters and the dynamics for m, h,
and 7 to be the same as in [28]. The dendritic compartment is
assumed to have leak and axial currents as well as an exter-
nal input current 1(z) as follows:

dv.
C— == aVa= By = gua(Va= VO + (). (26)

To obtain a subthreshold kernel of the multicompartment
model, we give an impulse stimulation to the dendritic com-
partment. The impulse stimulation is set to be sufficiently
weak not to induce an action potential. The response kernel
obtained as the impulse response at the somatic compartment
is shown in Fig. 6(B) and the suprathreshold STA derived
from the response kernel is shown in Fig. 6(C). We also
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FIG. 6. (Color online) (A) Schematic diagram of a multicompartment model with Hodgkin-Huxley type dynamics. The external inputs
are given to a dendritic compartment. (B) Impulse response (corresponding to response kernel) obtained from numerical simulation. (C)
Suprathreshold STA derived analytically as a first-order derivative of the response kernel shown in B (solid line) and the suprathreshold STA
obtained directly by numerical simulations using the multicompartment model (crosses). (D) Subthreshold STA fitted using a linear combi-
nation of the response kernel shown in B and its derivative (solid line) to the numerically obtained subthreshold STA (crosses).

obtain the suprathreshold STA directly by numerical simula-
tion. The constant current is set at a suprathreshold level
(Ip=1 pA/cm? and 0=0.05 wA/cm?). The crosses in Fig.
6(C) show the suprathreshold STA obtained numerically. We
find that the STA obtained numerically has a profile similar
to that of the STA obtained analytically. Thus, we see that the
analytically derived relationship between the suprathreshold
STA and SRM holds even in multicompartment model with
Hodgkin-Huxley type dynamics. To obtain the subthreshold
STA numerically, we perform numerical simulations in
which the mean of external input is set to a subthreshold
level (Iy=0.6 uA/cm?, 0=0.1 uA/cm?). The numerically
obtained STA is shown by crosses in Fig. 6(D), where we see
that the subthreshold STA is fitted well by the linear combi-
nation of the subthreshold response kernel and its derivative
[Fig. 6(D), solid line]. These results show that the difference
in the time profile between the subthreshold STA and su-
prathreshold STA, which has been derived in our analysis,
occurs even in the multicompartment model with Hodgkin-
Huxley type dynamics.

V. CONCLUDING REMARKS

In this study, we have analytically derived the relation
between the response kernel of the SRM and the STA by
moment expansion. By our analysis, the change in the time
profile between the sub and suprathreshold STAs has been
verified. We first showed analytically that the general form of
the STA can be expressed by a linear combination of the

response kernel and its derivative [s(7)=c k(7)+c,k'(7)].
We showed by the lower-order moment expansion that the
coefficient of the response kernel (¢;) in the linear combina-
tion was zero for the suprathreshold mean stimuli, leading to
a theoretical finding that the dominant term of the suprath-
reshold STA can be expressed by only the first derivative of
the response kernel. On the other hand, the infinite-order
moment expansion implied that c¢; is a nonzero value for the
subthreshold mean stimuli, indicating that the subthreshold
STA can be expressed as a linear combination of the re-
sponse kernel and its derivative. To verify the difference be-
tween the sub and suprathreshold STAs, we performed nu-
merical simulations using a multicompartment model with
Hodgkin-Huxley type dynamics. Numerical results showed
that the switch of the STA between the sub and suprathresh-
old regimes that was derived in our analyses also occurs in a
multicompartment model.

Mato and Samengo [20] numerically showed the differ-
ence between sub and suprathreshold STAs by relating those
STAs to the PRC, which can be defined when the mean
stimuli are suprathreshold. From their numerical results, the
suprathreshold STA was found to be similar to the first de-
rivative of the PRC, whereas the subthreshold STA was
found to be similar to the PRC. In the present study, on the
other hand, we have analytically shown the difference be-
tween sub and suprathreshold STAs by relating those STAs
to the response kernel, which can be defined regardless of
whether the mean stimuli are sub or suprathreshold.

Ermentrout ef al. [13] analytically showed using the phase
oscillator model that the suprathreshold STA is proportional
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to the first derivative of the PRC. Although the formulation
using the SRM in the present study is related to that using
the phase oscillator model in the previous study [13], these
formulations are different from each other in whether the
first passage time problem is treated; the present study ex-
plicitly treated the first passage time problem whereas the
previous study [13] did not. By taking the first passage time
problem into account, we showed that the suprathreshold
STA obtained from a neuron model including the nonlinear
effect through Eq. (8) is similar to the one obtained from the
phase oscillator model.

The PRC can be derived theoretically by means of the
adjoint method based on the local linearization of the dy-
namical equation of a neuron model around its limit-cycle
orbit, while the PRC can be obtained heuristically as an im-
pulse response from both model and biological neurons in
the periodic firing. On the other hand, the response kernel of
the SRM can be derived theoretically by means of the lin-
earization of the dynamical equation of a neuron model
around its resting state, while the response kernel can be
obtained heuristically as an impulse response from both
model and biological neurons in the resting state [25]. There-
fore, both the PRC and the response kernel can be derived
theoretically from the dynamical equations of a neuron
model such as the conductance-based model, whereas both
can be obtained experimentally from biological neurons.

In the present study, we assumed that the stochastic cur-
rent &(r) is described by the white Gaussian noise. This as-
sumption may be too strict for some physiological situations.
Using the formulation given in the present study, we can
investigate the case of the colored noise. We leave this as a
future work.

In the previous study by Burak ef al. [15], the subthresh-
old STA of the threshold crossing model was analytically
shown to be a linear combination of the response kernel and
its derivative. In their analysis, v(z,) and v’(z,) in the factor
Ofv'(t,) ]9 v(z,)] given in Egs. (8) and (10) were assumed to
be uncorrelated, approximately. In the present study, we also
showed that the subthreshold STA is expressed by a linear
combination of the response kernel and its derivative. How-
ever, in the present paper, the coefficients in linear combina-
tion in the subthreshold STA have not been determined yet,

s(7) = %Jm dtsfo0 dw explioH(t,)] + m
0 o

y expliwH(t,) +ivH'(t,)] O'ZK(T)I f f exp[le(t ) +ivH'(t, )]

k' (7)

explivH' (t,)]

_0’2K(7')f dt{ lfocdv ‘,
2 2 iv

f dtsf dw explioH(t,)ioH' (1) +
0 —o0
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while the suprathreshold STA was successfully derived in-
cluding the coefficient. Since the coefficients in the STA de-
termine the encoding properties of single neurons, it is im-
portant to determine the coefficients of the subthreshold STA
rigorously. We leave the evaluation of the coefficients of the
subthreshold STA by using the infinite-order expansion as a
future work.
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APPENDIX: DETAILED CALCULATION IN LOWER-
ORDER MOMENT EXPANSION

In this Appendix, we describe the derivation of Eq. (20)
from Egs. (16)—(19) by lower-order moment expansions of
the STA. That is, we evaluate the following expression:

1 o] <]
S(T) = 4_f dtsJ do exp[in(ts)]{aO,l(tm T)
m™J _»

+ [aOO I, T) + lwal O(tw T)]H (t )}

exp[sz(ts) +ivH'(1,)]
ﬂ'zf i f dwf iv

X {aO,l(ts’ T) + [a0,0(ts’ T) + iwal,()(ts’ T)
+ inO l(ts’ T)]H,(t )}

Using aoo(ts,r) 0, a(ty, 7= o’k(7), and ag (s, 7)
=0”k'(7) given in Egs. (17)-(19), we express Eq. (A1) as
follows:

(A1)

0—2 ] o0
s(7) = 4—f dtsf do explioH(t)[«'(7) + iox(7H'(1,)]
a 0 _»

[ aw| gl it )
4], ) > iv

(A2)

XA{k'(7) + [iwk(7) + iv' (1) |H' (1,)}.

By expanding this expression, we obtain

OQK,(T)rd fmdfwd
Py ) ts_ww_mv

wH'(t))

f‘” a’tsfoc dwfw dv expliowH(t,) + ivH'(t,)JH' (t,)
0 —0 —00

}Lf dw explioH(t, )]+O’2K(T)f dr,
27)
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1 1 (~ ivH' (1 1 ([~ * 1 [~
X9q =+ —f dVM —J dw explioH(t,)liwH' (1) + (TZK,(T)f dtS—f dw
o iv 2w )., o 2mJ_,

2 2

©

Xexp[in(ts)]%Tf

-0

dv explivH'(t,)1H'(1,).

Since Eq. (A3) includes the Fourier transform representa-
tions of the delta function and the Heaviside function, we
have

$(7) = 2 (7 f " dn OLH (1)1 AH()]
0
+ () f ) arOTH (1)1 ()]
0 K

P () f ST H)ISTH () H' (). (A4)
0

By partial integration of the second term in Eq. (A4), we get

(A3)

R e
0 I

=—0’k(7) f diy o[ H' (1) 1H"(1,) L H 1) ]. (AS)
0

From Egs. (A4) and (A5), we derive Eq. (20) as follows:

s(1) = OQK’(T)JQc dt®[H' (1) 1o H(t,)]
0
- O—ZK(T)I dtsé[H(ts)]é[H’ (ts)]H"(ts)
0

P () f S H)TH () H' (1), (AG)
0
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